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A convergent approach to the formal total
synthesis of hemibrevetoxin B
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Abstract—A convergent synthesis of the key synthetic intermediate of hemibrevetoxin B was achieved via the intramolecular allyl-
ation of an a-chloroacetoxy ether and subsequent ring-closing metathesis.
� 2006 Elsevier Ltd. All rights reserved.
Hemibrevetoxin B (1), which has a 6,6,7,7-tetracyclic
ether skeleton including 10 stereocenters, was isolated
from the cultured cells of the red tide organism Gym-
nodinium breve by Shimizu and Prasad in 1989.1 The
unique structural features have attracted the attention
of synthetic chemists, and a number of strategies have
been investigated. To date, seven total syntheses, includ-
ing three formal syntheses, have been reported.2 In this
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Scheme 1. Retrosynthetic analysis of hemibrevetoxin B (1).
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letter, we report a convergent formal total synthesis
of 1.

Scheme 1 describes our retrosynthetic analysis of 1. We
focused on the convergent construction of the key inter-
mediate 2, which was converted to 1 in our previous syn-
thesis,2c,e via the intramolecular allylation of a-acetoxy
ether 3 followed by ring-closing metathesis.3 The
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Scheme 2. Reagents and conditions: (a) TESOTf, 2,6-lutidine, CH2Cl2, rt, quant; (b) H2, Pd(OH)2–C, EtOAc, rt; (c) TIPSOTf, 2,6-lutidine, DMF,
rt–70 �C, 71% (two steps); (d) LiAlH4, ether, 0 �C and (e) (i) SO3Æpy, DMSO, Et3N, CH2Cl2, 0 �C; (ii) NaClO2, 2-methyl-2-butene, NaH2PO4, THF–
H2O, 0 �C.
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cyclization precursor 3 would be prepared from carb-
oxylic acid 4 and alcohol 5.

Synthesis of the AB ring segment 4 is illustrated in
Scheme 2. The alcohol 6, prepared by a known
procedure,2c,e was converted to TES ether 7 in quantita-
tive yield. Hydrogenation and debenzylation of 7 were
performed with H2/Pd(OH)2–C to give 8. The resulting
diol was protected with TIPSOTf/2,6-lutidine to give 9
in 71% overall yield. Reduction of the ester 9 with
LiAlH4 afforded alcohol 10 which was subjected to
stepwise oxidation to furnish the carboxylic acid 4.4

The D ring precursor 5 was prepared from the known
epoxide 11 (Scheme 3). Protection of 112j with
MPMCl/NaH gave 12 in 70% yield. Treatment of the
epoxide 12 with dimethylsulfonium methylide generated
in situ afforded allylic alcohol 13 in 77% yield.5 Protec-
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Scheme 3. Reagents and conditions: (a) MPMCl, NaH, TBAI, THF,
reflux, 70%; (b) Me3S+I�, n-BuLi, THF, �10 �C to rt, 77% and (c) (i)
TBSOTf, 2,6-lutidine, CH2Cl2, 0 �C–rt, 87%; (ii) DDQ, CH2Cl2, aq
NaHCO3, 35 �C, 70%.
tion of the resulting tertiary alcohol with TBSOTf/2,6-
lutidine followed by removal of the MPM protection
provided the alcohol 5 in 61% yield.

Coupling of the prepared segments is described in
Scheme 4. Esterification of the carboxylic acid 4 and
the alcohol 5 under Yamaguchi conditions gave ester
14 in 81% overall yield.6 Selective removal of the
TES protective group was performed using catalytic
CSA in MeOH to afford 15 in 94% yield. Acetalization
of 15 with c-methoxyallylstannane 16 in the presence
of CSA afforded mixed acetal 17 in 81% yield. Treat-
ment of 17 with TMSI/HMDS gave allylic stannane
18 in 91% yield.7 Modified Rychnovsky acetylation of
the ester 18 provided a-acetoxy ether 3 in 65% yield.8,9

Intramolecular allylation of 3 was carried out with
MgBr2ÆOEt2 to give 19 as a single stereoisomer in
79% yield. Ring-closing metathesis of the diene 19 with
the second generation Grubbs’ catalyst 20 furnished 21
in 76% yield.10 The stereochemistry of the 7,7-system
was confirmed by 1H NMR analysis (JHa�Hb =
9.3 Hz). Finally, hydrogenation of the D ring olefin
and deprotection of the 2,4,6-trichlorobenzyl (TCBn)
group were performed with H2/Pd–C to give the target
compound 2 in 68% yield. The physical and spectro-
scopic data of 2 were identical with those reported
previously.2e

In conclusion, we have achieved a convergent formal
total synthesis of hemibrevetoxin B 1 via the intramole-
cular allylation of an a-chloroacetoxy ether and ring-
closing metathesis. The longest linear sequence leading
to the key synthetic intermediate 2 from mannose was
37 steps, while our previous synthesis based on a linear
synthetic strategy required 49 steps.2c,e,11 Application of
the present strategy to the synthesis of other marine
natural products is in progress.
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Scheme 4. Reagents and conditions: (a) 2,4,6-trichlorobenzoyl chloride, Et3N, THF, rt, then 5, DMAP, toluene, rt, 81% (four steps); (b) CSA,
MeOH, 0 �C, 94%; (c) 16, CSA, CH2Cl2, rt, 81%; (d) HMDS, TMSI, CH2Cl2, 0 �C, 91%; (e) DIBAL–H, �78 �C, CH2Cl2, then (CH2ClCO)2O,
DMAP, pyridine, �78 �C, 65%; (f) MgBr2ÆOEt2, 4 Å MS, CH2Cl2, 0 �C, 79%; (g) 20, benzene, 80 �C, 76% and (h) H2, 10% Pd–C, EtOAc, rt, 68%.
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