Tetrahedron Letters 48 (2007) 219-221

Tetrahedron Letters

A convergent approach to the formal total synthesis of hemibrevetoxin B

Isao Kadota,^{a,*} Takashi Abe,^b Yukako Ishitsuka,^b Abeda S. Touchy,^b Ryoko Nagata^b and Yoshinori Yamamoto^b

^aDepartment of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan

Received 3 October 2006; revised 31 October 2006; accepted 9 November 2006

Abstract—A convergent synthesis of the key synthetic intermediate of hemibrevetoxin B was achieved via the intramolecular allylation of an α -chloroacetoxy ether and subsequent ring-closing metathesis. © 2006 Elsevier Ltd. All rights reserved.

Hemibrevetoxin B (1), which has a 6,6,7,7-tetracyclic ether skeleton including 10 stereocenters, was isolated from the cultured cells of the red tide organism *Gymnodinium breve* by Shimizu and Prasad in 1989. The unique structural features have attracted the attention of synthetic chemists, and a number of strategies have been investigated. To date, seven total syntheses, including three formal syntheses, have been reported. In this

letter, we report a convergent formal total synthesis of 1.

Scheme 1 describes our retrosynthetic analysis of 1. We focused on the convergent construction of the key intermediate 2, which was converted to 1 in our previous synthesis, 2c,e via the intramolecular allylation of α -acetoxy ether 3 followed by ring-closing metathesis.³ The

Scheme 1. Retrosynthetic analysis of hemibrevetoxin B (1).

Keywords: Hemibrevetoxin B; Polycyclic ethers; Convergent synthesis.

^bDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

^{*}Corresponding author. Tel./fax: +81 86 251 7836; e-mail: kadota-i@cc.okayama-u.ac.jp

Scheme 2. Reagents and conditions: (a) TESOTf, 2,6-lutidine, CH₂Cl₂, rt, quant; (b) H₂, Pd(OH)₂–C, EtOAc, rt; (c) TIPSOTf, 2,6-lutidine, DMF, rt–70 °C, 71% (two steps); (d) LiAlH₄, ether, 0 °C and (e) (i) SO₃·py, DMSO, Et₃N, CH₂Cl₂, 0 °C; (ii) NaClO₂, 2-methyl-2-butene, NaH₂PO₄, THF–H₂O, 0 °C.

cyclization precursor 3 would be prepared from carboxylic acid 4 and alcohol 5.

Synthesis of the AB ring segment **4** is illustrated in Scheme 2. The alcohol **6**, prepared by a known procedure, ^{2c,e} was converted to TES ether **7** in quantitative yield. Hydrogenation and debenzylation of **7** were performed with H₂/Pd(OH)₂–C to give **8**. The resulting diol was protected with TIPSOTf/2,6-lutidine to give **9** in 71% overall yield. Reduction of the ester **9** with LiAlH₄ afforded alcohol **10** which was subjected to stepwise oxidation to furnish the carboxylic acid **4**.⁴

The D ring precursor **5** was prepared from the known epoxide **11** (Scheme 3). Protection of **11**^{2j} with MPMCl/NaH gave **12** in 70% yield. Treatment of the epoxide **12** with dimethylsulfonium methylide generated in situ afforded allylic alcohol **13** in 77% yield.⁵ Protec-

Scheme 3. Reagents and conditions: (a) MPMCl, NaH, TBAI, THF, reflux, 70%; (b) $Me_3S^+I^-$, n-BuLi, THF, $-10\,^{\circ}\text{C}$ to rt, 77% and (c) (i) TBSOTf, 2,6-lutidine, CH_2Cl_2 , $0\,^{\circ}\text{C}$ -rt, 87%; (ii) DDQ, CH_2Cl_2 , aq NaHCO₃, 35 °C, 70%.

OTCBn

13

OTCBn

tion of the resulting tertiary alcohol with TBSOTf/2,6-lutidine followed by removal of the MPM protection provided the alcohol 5 in 61% yield.

Coupling of the prepared segments is described in Scheme 4. Esterification of the carboxylic acid 4 and the alcohol 5 under Yamaguchi conditions gave ester 14 in 81% overall yield.⁶ Selective removal of the TES protective group was performed using catalytic CSA in MeOH to afford 15 in 94% yield. Acetalization of 15 with γ -methoxyallylstannane 16 in the presence of CSA afforded mixed acetal 17 in 81% yield. Treatment of 17 with TMSI/HMDS gave allylic stannane 18 in 91% yield.⁷ Modified Rychnovsky acetylation of the ester 18 provided α -acetoxy ether 3 in 65% yield.^{8,9} Intramolecular allylation of 3 was carried out with MgBr₂·OEt₂ to give 19 as a single stereoisomer in 79% yield. Ring-closing metathesis of the diene 19 with the second generation Grubbs' catalyst 20 furnished 21 in 76% yield. 10 The stereochemistry of the 7,7-system was confirmed by ${}^{1}H$ NMR analysis $(J_{Ha-Hb} =$ 9.3 Hz). Finally, hydrogenation of the D ring olefin and deprotection of the 2,4,6-trichlorobenzyl (TCBn) group were performed with H₂/Pd-C to give the target compound 2 in 68% yield. The physical and spectroscopic data of 2 were identical with those reported previously.2e

In conclusion, we have achieved a convergent formal total synthesis of hemibrevetoxin B 1 via the intramolecular allylation of an α -chloroacetoxy ether and ringclosing metathesis. The longest linear sequence leading to the key synthetic intermediate 2 from mannose was 37 steps, while our previous synthesis based on a linear synthetic strategy required 49 steps. 2c,e,11 Application of the present strategy to the synthesis of other marine natural products is in progress.

Scheme 4. Reagents and conditions: (a) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, rt, then 5, DMAP, toluene, rt, 81% (four steps); (b) CSA, MeOH, 0 °C, 94%; (c) 16, CSA, CH₂Cl₂, rt, 81%; (d) HMDS, TMSI, CH₂Cl₂, 0 °C, 91%; (e) DIBAL–H, -78 °C, CH₂Cl₂, then (CH₂ClCO)₂O, DMAP, pyridine, -78 °C, 65%; (f) MgBr₂·OEt₂, 4 Å MS, CH₂Cl₂, 0 °C, 79%; (g) 20, benzene, 80 °C, 76% and (h) H₂, 10% Pd–C, EtOAc, rt, 68%.

Acknowledgements

This work was financially supported by the Novartis Foundation for the Promotion of Science, the Kurata Memorial Hitachi Science and Technology Foundation, the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- Prasad, A. V. K.; Shimizu, Y. J. Am. Chem. Soc. 1989, 111, 6476–6477.
- For total syntheses of hemibrevetoxin B, see: (a) Nicolaou, K. C.; Reddy, K. R.; Skokotas, G.; Sato, F.; Xiao, X.-Y. J. Am. Chem. Soc. 1992, 114, 7935–7936; (b) Nicolaou, K. C.; Reddy, K. R.; Skokotas, G.; Sato, F.; Xiao, X.-Y.; Hwang, C.-K. J. Am. Chem. Soc. 1993, 115, 3558–3575; (c) Kadota, I.; Park, J.-Y.; Koumura, N.; Pollaud, G.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett. 1995, 36, 5777–5780; (d) Morimoto, M.; Matsukura, H.; Nakata, T. Tetrahedron Lett. 1996, 37, 6365–6368; (e) Kadota, I.; Yamamoto, Y. J. Org. Chem. 1998, 63, 6597–6606; (f) Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125, 7822–7824; For formal syntheses, see: (g) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1997,

- 119, 4557–4558; (h) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Org. Chem. 1998, 63, 6200–6209; (i) Rainier, J. D.; Allwein, S. P.; Cox, J. M. J. Org. Chem. 2001, 66, 1380–1386; (j) Fujiwara, K.; Sato, D.; Watanabe, M.; Morishita, H.; Murai, A.; Kawai, H.; Suzaki, T. Tetrahedron Lett. 2004, 45, 5243–5246.
- 3. Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 3562–3566.
- 4. Attempts at the direct saponification of 9 gave poor results
- Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Shin, D.-S.; Falck, J. R. *Tetrahedron Lett.* 1994, 35, 5449–5452.
- Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yama-guchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.
- 7. Kadota, I.; Sakaihara, T.; Yamamoto, Y. *Tetrahedron Lett.* **1996**, *37*, 3195–3198.
- Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 46– 47.
- For the original conditions, see: (a) Dahanukar, V. H.; Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317–8320; (b) Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem. 2000, 65, 191–198; (c) Kopecky, D. J.; Rychnovsky, S. D. Org. Synth. 2003, 80, 177–183.
- Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956.
- 11. Seven steps are required to complete the total synthesis of 1 from 2.